Можно ли подсвечивать растения светодиодными лампами - MAGMAPROFI.RU

Можно ли подсвечивать растения светодиодными лампами

Освещение растений белыми светодиодами — проверочная работа

Эта статья написана под впечатлением от другой статьи на GT, о чем говорит похожее название. Дело в том, что этой темой я интересуюсь лет двенадцать и потому статья iva2000 вызвала довольно живой отклик в моем сознании. Результаты и выводы меня почти убедили, но остались моменты, с которыми я не согласен. Решил всё пересчитать и так как результат получился довольно объемный, я решил написать его в виде отдельной статьи, а не комментария.

Прочитав заголовок и вступление, я был настроен критически. Еще бы! Я сам производил расчеты, куча людей производит и использует специальные фитолампы (не только светодиодные — посмотрите на люминесцентные светильники в любом цветочном магазине!), а тут некто заявляет, мол, всё это туфта, белые светодиоды не хуже. Но ознакомившись до конца, я свое мнение изменил и понял что в этом мнении есть существенная доля истины, но надо разбираться… Всем кто не читал эту статью — убедительная просьба ознакомиться для лучшего понимания, т.к. для сокращения объема и исключения дублирования информации я буду только ссылаться на данные указанной статьи, но не повторять их. Остальные же — давайте продолжим!

Итак, сначала, что же мне показалось спорным.

1. В указанной статье приводится кривая фотосинтетической активности света McCree, которая означает прибавку биомассы растением при освещении его светом узкой полосы, но почему-то отметается её значение вовсе под предлогом, что «в широкой полосе разница будет незначительной). В разделе „Результаты анализа спектров серийных белых светодиодов“ под пунктом 3 и вовсе приведена формула расчета энергетической ценности света с использованием ДВУХ интересных параметров — это ɳ — световая отдача в лм/Вт и Ra — индекс цветопередачи.

Обе этих величины имеют жесткую привязку к другой кривой, которая называется „фотопической“. Это кривая чувствительности человеческого глаза к свету. Чтобы не быть голословным, посмотрим на картинку:

Они едва ли похожи друг на друга, верно? Поясню, что люмены измеряются датчиком, имеющим чувствительность, строго соответствующую приведенной фотопической кривой. А фотосинтез осуществляется в соответствии с приведенной кривой McCree (она и есть гоафическое отображение интенсивности фотосинтеза в зависимости от длины волны). И, как вы уже заметили, кривых на рисунке две. Одна из них — нормирована к числу фотонов, а вторая к мощности излучателя, что в обсуждаемой статье даже не упомянуто. Уважаемый автор приводит кривую нормированную по числу фотонов, но не указывает этого и в дальнейшем не использует её, а использует кривую чувствительности глаза человека. Но, простите, причем здесь тогда фотосинтез? Либо не использовать никакую кривую и считать все фотоны равнозначными либо использовать ту, которая соответствует изучаемому процессу! Индекс цветопередачи же — это вообще некий виртуальный показатель, который говорит — на сколько точно будут переданы цвета (фотографии, ткани и т.п.) при освещении их данным источником света. Т.е. тоже никакого отношения к фотосинтезу не имеет. Т.е. приведенная формула является слишком грубым приближением чтобы оценить реальное качество источников со сложным спектром излучения!

Дальше-больше! Я проверил расчетные значения ФАР в мкмоль/дж, которые автор приводит в таблице с помощью приведенной им же формулы и получилось вообще черте что:

Цифры вообще не те и отличаются в разы от приведенных. Неужели автор не проверял свои же данные для статьи? Это меня никак не устроило и я сделал расчет как положено — без странных формул с не понятно откуда взятыми коэффициентами и параметрами, относящимися к другой области применения.

Для начала цифруем картинки всевозможных графиков и загоняем их в табличный процессор. Оп!

Затем делаем так. Сначала рассчитаем коэффициент фотосинтетической активности для каждого источника. Для этого для выбранного источника умножаем мощность излучения на каждой длине волны на число из графика McCree, для той же длины волны. Затем подсчитываем интеграл (сумму) мощности для исходного графика и результата перемножения. Делим второе на первое — получаем коэффициент, означающий эффективную долю излучения для данного источника (ту, которая примет участие в фотосинтезе):

Вот, уже можно сделать предварительные выводы!

1. ДНаТ — это супер для освещения растений! Эффективность его спектра достигает 79% и это для лампы, которую первоначально проектировали в общем-то не для этого, а для освещения автомагистралей и промышленных объектов.
2. Фитолампы не смотря на „специальный“ спектр не превосходят обычные белые светодиоды с цветовой температурой 4000К и не сильно лучше „холодно-белых“ 6000К.
3. Светодиоды красного (обычного) и дальнего красного вообще вне конкуренции.
4. Получается, что если хочется выжать всё из каждого ватта освещения, нужно брать обычные красные светодиоды (излучатели дальнего красного — почти в 2 раза дороже), а если хочется сэкономить в цене аппаратуры — нужно брать белые светодиоды.

Но, как я уже сказал, выводы эти предварительные и основаны только на оценке эффективности спекра источников, без учета их кпд и некоторых других моментов. Поэтому разбираемся дальше.

Что же будет, если учесть КПД источников? Данные о КПД взяты частично из статьи iva2000, а по красным светодиодам я точных данных не нашел, но в старых моих записях по данным литературы были числа меньше чем для синих светодиодов, т.к. в последнее время всё развитие технологии было направлено именно на светодиоды синего свечения, а другие оставались в хвосте прогресса.

По большому счету их цифры взяты наобум, но они в данном случае не играют основную роль, поэтому хватит об этом. И если кто-то сообщит более достоверные данные, я буду только благодарен.

Вот тут-то расстановка сил уже меняется!

Оказывается, светодиоды с CCT 4000К лучше даже ДНаТ! Причем, если для 1000 Ваттной лампы преимущество это не существенное, то для натриевых ламп малой мощности (100Вт) преимущество уже достигает 2,4 крат! А фитолампа — бесполезная трата денег — она уступает обычным белым светодиодам на 25%! Вот тебе и фитолампа!

И чтобы уже всё сделать предельно точно, считаем на фотоны по формуле:

Где h- постоянная Планка, c — скорость света.

Но число фотонов нам не нужно, поэтому чтобы перевести все в моли, делим всё на число Авогадро и умножаем на миллион для представления в микромолях.

Вот теперь можно сделать окончательные выводы:

1. ДНаТ имеет сравнимую эффективность только при использовании ламп большой мощности (600-1000Вт). Если Вы хозяин крупного тепличного хозяйства, то по совокупности эксплуатационных характеристик лампы на киловатт — Ваш выбор! Затраты на установку освещения и замену ламп будут существенно ниже, а затраты на электроэнергию приблизительно одинаковы со светодиодами. Малое количество синих лучей в спектре ламп компенсируется наоборот высоким их количеством в естественном свете, особенно зимой (цветовая температура неба достигает 15000К!) — это как раз ситуация с теплицами, когда досветка включается утром и вечером, а днем используется естественное освещение.

2. Наиболее эффективны светодиоды с цветовой температурой 4000К. 100 Ваттная светодиодная лампа дает на 43% больше фитоактивного излучения чем лампа ДНаТ той же мощности! Цена, как ни странно, тоже на стороне светодиодов — цена лампы ДНаЗ на момент написания статьи — чуть больше 1000р., в то время как светодиоды с той же мощностью на алиэкспрессе идут за 360р. (в исполнении COB — много чипов на одной подложке)! Это еще не считая балласта в обоих случаях. Если вы растите зелень на подоконнике или в гроубоксе, то белые светодиоды — вне всякой конкуренции. Достаточно один раз купить хорошие светодиоды и их обвязку и вы обеспечены отличным экономичным освещением на годы.

3. Фитолампы. Я изначально был другого мнения, но основываясь на данных о практическом использовании белых светодиодов из статьи iva2000, подтвержденных теперь собственным исследованием приходится констатировать, что они не дают никакого преимущества по энергоэффективности или по качеству выращенных растений, а всё с точностью до наоборот! Скрипач не нужен!

* Небольшое пояснение по фигурировавшим в таблицах комбинациям белых светодиодов с красными. Я для интереса рассмотрел вариант освещения, когда в дополнение к белым светодиодам дополнительно устанавливаются обычные красные или специальные с дальним красным спектром свечения (в пропорции 3:1 по мощности). Это бывает необходимо для стимуляции цветения. Если вы разводите цветочки или землянику или другие растения, у которых цветение или плодообразование является основной целью, это может быть оправдано. Если вы растите салат и петрушку, то вряд ли стоит заморачиваться — красные светодиоды дороже белых раза в 2,5, а специальные „фито“ с дальним красным — в 4 раза! Если цель — нарастить зеленой массы за минимальные деньги, лучше взять еще один или даже два белых светодиода — будет лучше и дешевле! Только не стоит загонять бедные диоды в гроб — зная любовь китайских товарищей к завышению параметров, нужно следить, чтобы при работе основание светодиодов грелось как можно меньше — позаботиться об эффективном теплоотводе и ограничивать рабочий ток. Лучше купить на 20% больше диодов и пустить на них на 20% меньший ток и таким образом в разы увеличить их время жизни, чем навалить на полную катушку и через год получить 50% первоначального светового потока и половину нерабочих корпусов!

В целом нельзя не отметить, что революция в малом растениеводстве свершилась и это не может не радовать! Ко мне сейчас едут несколько мощных светодиодов и если со свободным временем всё сложится, то в продолжении будет практический результат в дополнении к этой сугубо теоретической части.

PS: Друзья! Большое спасибо за положительную оценку моей небольшой, но я очень надеюсь полезной для всех работы! Мне интересно пообщаться на эту тему и ответить на все вопросы, по ней, в рамках объема моих знаний. Так что не стесняйтесь — заходите в обсуждение. Особенно приветствуются дополнения и ссылки на другую информацию, которые могли бы восполнить возможные пробелы в этом материале!

Делаем светодиодную подсветку растений: расчет мощности, выбор ленты, расчет питания

Уменьшение естественной инсоляции зимой приводит к световому голоданию комнатных растений и снижению интенсивности фотосинтеза. Светодиодная подсветка для растений и цветов решает эту проблему, но нужно уметь ее подобрать. Разберем как выбрать светодиодную лампу для растений и сделаем ее своими руками.

При недостаточной освещённости тормозятся процессы фотосинтеза что неизбежно приводит к торможению роста. Стебли истончаются, вытягиваются в сторону основного источника освещения. В период обильного цветения недостаток освещения приводит к самовольному сбросу бутонов.

Читайте также  Как собрать мебель из фанеры?

Какая подсветка нужна для растений

Качество освещения для домашних цветов зависит от:

  • Спектра освещения;
  • интенсивности освещенности;
  • длительности освещения в течение суток.

Также влияют температура в помещении и концентрация углекислого газа, но в пределах квартиры влиять на эти параметры трудно, потому опустим их.

Требования к подсветке цветов и растений:

  • Отсутствие сильного тепловыделения, растения не должны перегреваться;
  • наличие в спектре излучения красного и синего света, необходимого для нормального процесса фотосинтеза.

Нагрев лампы

Из-за большого нагрева колбы, лампы накаливания непригодны для использования.

Натриевые лампы высокого давления (ДНАТ) лучше подходят для подсветки растений и широко применяются в теплицах. Но для домашних условий они мало пригодны из-за высокой мощности и соответственно значительного тепловыделения (колба может нагреваться до 600 градусов). Также они дорогие в эксплуатации (высокая стоимость трансформаторов розжига).

Светодиоды практически не греются (подробнее про нагрев светодиодов), потому подойдут для квартирного использования.

Спектр излучаемого света

Хлорофилл, находящийся в зелёных листьях, способен активно поглощать свет с длинной волны 380-710 нанометров, остальной спектр не активирует процессы фотосинтеза.

График эффективной длины волн для растения

Более короткие волны в спектре 380-500 нанометров стимулируют процессы деления клеток и увеличение зелёной массы, а излучение с длинной волны 500-700 нанометров необходимо для интенсивного цветения и плодоношения.

На графике наглядно видно, какой цветовой диапазон более эффективный для роста растения. Теперь сравним со спектром, излучаемым разными типами ламп.

Сравнение спектров разных источников света

Обыкновенные лампы накаливания мало подходят для подсветки комнатных растений, поскольку у них преобладает теплый спектр (700+ нанометров). Люминесцентные, которым отдают предпочтения за счет их стоимости, по спектру совсем бедные и уступают даже лампам накаливания.

Спектр излучения светодиодов для растений будет идеальным. Особенно при объединении холодного белого – 400-500нм и теплого белого 500-700нм цветов.

Преимущества подсветки цветов светодиодами

Минимальный срок службы светодиодов 50 000 часов при минимальных потерях в яркости.

Светодиоды более экономичны и расходуют меньше электроэнергии (по сравнению с лампами накаливания в несколько раз). Обладают крайне высоким КПД и выдают около 100 Лм на 1Вт потребленной энергии.

Светодиодные ленты излучают свет под углом 120 градусов, что позволяет сконцентрировать излучение на растениях, а не освещать комнату.

Компактные размеры позволяют создавать освещение для цветов любых форм.

Сравнительный анализ фитоламп для растений
Люминес-центная Ртутная Металл-галогенная Натриевая Свето-дидная
КПД ФАР 20-22% 10-12% 16-28% 26-30% 99%
Cрок службы 10-15 тыс. часов 10-15 тыс. часов 6-10 тыс. часов 16-24 тыс. часов 50-100 тыс. часов
Средняя световая отдача 50-80 лм/Вт 45-55 лм/Вт 80-100 лм/Вт до 150 лм/Вт до 100 лм/Вт
Минусы, ограничения использования Не годится для большой площади, не подходящий спектр для растений Экономически невыгодна Невысокий индекс цветопередачи Невысокий индекс цветопередачи Нет
Среднее потребление энергии 15-65 Вт/час 50-400 Вт/час 70-400 Вт/час 70-600 Вт/час 1 Вт/час на один диод или 15Вт на метр ленты
Коэффициент пульсации 22-70% 63-74% 30% 70% Менее 1%
КПД 50-70% 50-70% 50-70% 50-70% 90%

Специализированные светодиодные фитолампы для растений

Фитолампы – это красные и синие светодиоды с пиком интенсивности в диапазоне 440 и 660 нанометров, т.е. вся мощность излучения находится в эффективном для растений диапазоне.

Такой светодиодный светильник для растений применяется, если необходимо освещать небольшую площадь в 30-50 см 2 (одно растение или один горшок), т.к. светоизлучающий модуль имеет угол светового потока 120 градусов. Для подсветки большого количества растений (рассада) более рентабельно использовать светодиодные ленты и модули.

Фитолампа – хороший выбор для роста одного комнатного цветка, но цена на них неоправданно выше чем на обычные светодиодные ленты. При комбинировании теплого и холодного света светодиодных лент, вы получите тот же результат, но за меньшие деньги.

Важно. Решив использовать фитолампы, не покупайте формфактор типа «кукуруза». Большая часть излучения будет тратится впустую, даже при наличии рефлектора, снижая общую эффективность освещения.

Делаем светодиодную подсветку для цветов своими руками

Изготавливать светодиодные лампы под цоколь нет смысла. Это не практично. Мы будем использовать светодиодную ленту. Изготовление самодельной фитолампы для цветов сводится к трем пунктам:

  1. Рассчитать необходимую мощность светодиодного освещения для цветов.
  2. Подобрать модель ленты.
  3. Подобрать блок питания.

Расчет мощности светодиодного освещения

Необходимая освещенность для полноценного роста цветов составляет 10000-15000 Люкс. Исходя из этих цифр следует отталкиваться при расчёте подсветки для растений из светодиодов.

Разберем на конкретном примере. Делаем подсветку рассады в коробке размером 0,75 x 0,3 метра. Обеспечим растения освещением 15 000 Люкс.

15 000 Люкс – интенсивность излучения 15 000 Люмен, освещающего поверхность 1 м 2 с высоты 1 метр.

Наша освещаемая площадь:

0,75м * 0,3м = 0,225 м 2

Значит наша требуемая интенсивность света:

15000 Лм/м 2 * 0,225м 2 = 3375 Люмен

Определим высоту расположения освещения. Полученная интенсивность освещения в 3375 Лм нужна при расположении светодиодных ламп для растений на высоте 1м. Уменьшив высоту в два раза, требуемая интенсивность упадет в 4 раза (закон обратных квадратов). Разместив освещение на высоте 0,5м, получим интенсивность света:

Закон обратных квадратов — при увеличении расстояния до источника света в 2 раза, интенсивность светового излучения падает в 4 раза.

3375 / 4 = 845 Лм

Осталось подобрать LED ленту по этим параметрам.

Подбираем светодиодную ленту для подсветки цветов

Из расчета мы получили необходимую интенсивность света 845 Лм. При наших размерах коробки с цветами, лучше взять 2-4 отрезка ленты, длиной 0,75 м, чтобы равномерно покрыть всю площадь.

Световой поток LED ленты указывается из расчета на 1м. Если нам нужно только 0,75м, то необходимо добавить 25% к заявленной производителем интенсивности светового потока.

845 / 2 * 1,25 (компенсируем длину ленты) = 530 Люмен (для двух отрезков)

845 / 4 * 1,25 = 265 Люмен (для четырех отрезков)

Итоговые параметры ленты:

  • Интенсивность света (яркость) 465 Лм;
  • Температуру света – комбинируем теплый + холодный (3000К + 6000К);
  • Напряжение питания 12В – самый распространенный тип лент.

Нам подойдет SMD3528-W-60led — 3 метра, или SMD2835-W-60led — 1,5м. Здесь можете почитать про маркировку лент.

Выбор блока питания для светодиодных лент

Важно подобрать подходящий для драйвер для питания освещения комнатных растений. Критериев всего несколько:

  • Мощность (самый важный);
  • тип корпуса;
  • дополнительный функционал.

Расчет мощности блока питания. Рассмотрим на примере 3 метров ленты SMD 3528, 60 светодиодов на 1 погонный метр. Мощность 1 п.м. 4,8W. Прибавим 25% запаса на потерю в соединениях и проводниках и получим:

(длина) * 4,8W (мощность 1 метра) * 1,25 (запас) = 18W.

Подойдет любой БП мощностью больше 20Вт и напряжением 12В.

Тип корпуса. Бывают корпуса с разным уровнем пыле- влагозащиты, в алюминиевом или пластиковом корпусе с принудительным или естественным охлаждением.

  • Степень защиты выбираем в зависимости от условий эксплуатации. При высокой влажности (размещение внутри теплиц) степень защиты должна быть не ниже IP67.
  • Материал корпуса выбирайте любой. Преимуществ никаких не дает.
  • Принудительное охлаждение необходимо при высокой мощности блока питания (свыше 200W). В противном случае достаточно пассивного охлаждения.

Дополнительный функционал. Блоки питания могут иметь дистанционное управление с пульта, снабжаться lcd экранами, иметь таймеры. Дополнительный функционал приобретайте по желанию. Чем больше функций — тем дороже блок питания.

Подключение ленты к блоку питания

Подключайте все отрезки лед ленты параллельно к блоку питания. При подключении используйте коннекторы (подробнее про соединение отрезков ленты). Один неразрывный участок ленты не должен превышать длины 5м.

Помните про класс защиты светодиодной ленты для растений и блока питания. Выбирая класс IP20 — размещайте освещение и питание в сухих, незапыленных местах. Если класс IP67,68 — размещать можно даже во влажных теплицах.

Варианты размещения освещения для рассады

  • Индивидуальная подсветка растений светодиодами.
  • Стеллажи для растений.

Индивидуальная подсветка растений.

Точечное освещение растений позволит не только избежать ежегодной передислокации всех горшков и вазонов к месту зимовки, но и создать уникальный, неповторимый дизайн интерьера. В качестве источника освещения можно использовать миниатюрные, но мощные светодиоды.

Светодиоды для подсветки растений способны выдавать до 120 люмен и быть как подсветкой для растения, так и ночником.

Для индивидуальной подсветки можно купить специализированную светодиодную фитолампу, о которых мы писали выше. Метод расчета тот же, что и для светодиодной ленты.

Стеллажи для растений.

При большом количестве объектов освещения более целесообразно сделать полки снизу которых будет монтироваться светодиодная лента для растений.

Стеллажи можно оградить светоотражающими материалами: фольгой, металлизированным утеплителем. Это позволит обеспечить круглосуточную подсветку, но не будет мешать отдыхать в вечернее время. Также такая ширма увеличит освещенность растений на 10-15 процентов.

Освещение для растений — все что нужно знать простыми словами.

Большую часть года, света для растений очень мало. И те, кто выращивают их круглогодично в закрытых помещениях, а не по сезонно на улице, сталкиваются из-за этого с большими проблемами.

Единственный выход их решить — это использовать искусственные источники света. Какие из них лучше выбрать и на что ориентироваться?

В первую очередь, рядовой обыватель обращает внимание на уровень потребления электроэнергии. Чем больше у вас будет растений, тем больше потребуется светильников и лампочек для них.

Неохота платить за электричество больше стоимости урожая. Поэтому при покупке светильников, большое внимание уделяют такому параметру как КПД лампочки.

Всем известные лампочки-груши с нитью накаливания, в процессе работы очень сильно нагреваются. Связано это с тем, что в них большая часть эл.энергии преобразуется не в свет, а в бесполезное тепло.

Поэтому постепенно от них начали отказываться и стали переходить на энергосберегающие лампы. Их КПД примерно в 4 раза выше, чем у обычных.

Однако по факту, мы получили те же самые люминесцентные лампы, хоть и меньшего размера, но содержащие ртуть. Если такая лампочка разобьется, вам придется срочно принять меры безопасности и провести так называемую демеркуризацию всего помещения.

Не только сама ртуть, но и ее пары ядовиты для человека. И даже в сверхмалых концентрациях могут вызвать тяжелые последствия.

Поэтому впоследствии им на замену пришли более безопасные светодиодные источники света. А специально для растений были разработаны фитолампы.

У светодиодов также высокий КПД и минимальный нагрев. А самое главное, они по-прежнему совершенствуются и улучшают свои характеристики год от года.

Однако как оказалось, КПД лампочки это не главное в правильном выращивании растений. Самое важное — это их спектр и насколько он отличается от естественного солнечного излучения. Ведь именно к нему привыкли все цветы, овощи, фрукты, ягоды.

Что же прячется за таким научным названием как спектр излучения? Чтобы понять это, придется вспомнить что такое свет? А свет — это не что иное, как электромагнитная волна.

Причем каждый цвет имеет определенную длину волны, отсюда и получается радуга. Однако разная длина означает не только разный цвет, но самое главное — разное количество энергии.

Если все цвета условно представить не в виде привычной прямой линии, а в виде шариков, то синий шарик будет самым большим по размеру. Зеленый поменьше, а красный окажется самым маленьким.

Все цвета всегда упрощают именно до этих трех видов R-G-B:

Почему синий шарик окажется самым объемным? Потому что длина его волны самая маленькая. Она меньше чем у зеленого цвета. А у зеленого в свою очередь, меньше чем у красного.

В итоге и получается, что красный цвет несет в себе меньше энергии, а синий больше всего.

И тут у многих может возникнуть логичный вопрос: «А есть ли разница в том, каким именно спектром освещать растения?» И если есть, можно ли эти знания как-то применить с пользой для дела?

Ведь если какой-то цвет окажется более эффективным, то нет ничего проще, как направить всю энергию на растение только от него. Если синий цвет самый «жирный», достаточно засвечивать растения только им и получать шикарный урожай круглый год.

Однако все оказывается не так просто. Здесь нужно учитывать еще одну характеристику света — его качественный или спектральный состав.

Чтобы понять как отдельные цвета влияют на эффективность фотосинтеза, проводились научные эксперименты. Из целого листа выделялись отдельные чистые хлорофиллы. После чего, в течение длительного времени, их засвечивали светом различного спектра и проверяли результаты.

При этом в первую очередь, смотрели на эффективность поглощения СО2, то есть интенсивность фотосинтеза. Ниже представлен итоговый график такого эксперимента.

Из него видно, что хлорофилл в основном поглощается в синей и красной областях. В зеленой области эффективность минимальна.

Однако на этом не остановились и провели еще один эксперимент. В растениях также содержатся каротиноиды. Они хоть и играют незначительную роль, но и про них забывать не стоит.

Так вот, аналогичный опыт с каротиноидами показал, что ранее выделенные пигменты листа, поглощают в этом случае свет преимущественно в синей области спектра.

Посмотрев на это, все дружно решили что зеленый цвет абсолютно бесполезен и им можно пренебречь. Основной упор все специалисты предлагали делать только на синий и красный свет.

И соответственно более правильным считалось выбирать лампочки, которые излучают именно эти спектры больше всего.

Но как оказалось, изначальная ошибка экспериментаторов закралась в том, что они использовали не весь лист целиком, а выделяли из него пигменты и смотрели результаты только по ним.

На самом деле, в цельном листе свет очень сильно рассеивается. Провели еще опыты, но уже смотрели на весь лист и использовали разные растения. В итоге получили данные, которые более точно показывали насколько эффективно свет поглощается всем листком, а не его отдельными «кусочками».

С одной стороны, здесь опять доминируют синий и красный свет. Отдельные пики потребления фотонов доходят до 90 процентов.

Однако к удивлению многих, и зеленые лучи оказались не столь бесполезны как думали раньше. Дело в том, что благодаря своей проникающей способности, зеленый снабжает энергией более глубокие участки листвы, куда не долетают ни красный, ни синий.

Таким образом, если полностью отказаться от зеленого, вы можете ненароком погубить растение, и даже не будете понимать в чем причина.

Получается, что все цвета R-G-B нормально усваиваются листьями и нельзя выбрасывать какой-то один из них. Вот только необходимость энергии на разных цветах у разных растений не равноценна.

Для того чтобы объяснить это более наглядно и понятнее, проведем аналогию с чем-то съедобным. Допустим у вас на столе лежит спелый персик, ягода малины и груша.

Для вашего желудка все равно что вы съедите. Он одинаково хорошо переварит все ягоды и фрукты. Но это не означает, что для вас в последствии не будет никакой разницы. Разные продукты все равно по-разному влияют на ваш организм.

Съесть 10 ягод клубники это не то же самое, что 10 груш или персиков. Вы должны найти определенный баланс.

То же самое происходит и со светом для растений. Ваша задача грамотно подобрать, насколько каждого света должно быть в общем спектре. Только таким образом можно рассчитывать на быстрый рост.

Самый главный вопрос — какой свет будет считаться лучшим? Казалось бы, что тут гадать. Лучший вариант это солнечный свет и его близкие аналоги.

Ведь миллионы лет растения именно под ним и развивались. Однако посмотрите на картинку ниже. Вот как реально выглядит интенсивность солнечного света.

Видите, насколько здесь много зеленого. А как мы выяснили ранее, он хоть и полезен, но не в такой степени как другие лучи. Когда говорят, что солнечный свет самый эффективный и нечего отступать от матушки природы, не учитывают один простой факт.

В реальной жизни, а не в экспериментах, растения адаптируются не только к солнечному свету, но также и к условиям окружающей их среды, в которой они произрастают.

Допустим на глубине водоема, где растет какая-то зелень, доминирует синий цвет. А вот в лесу под кроной деревьев, уже победителем выходит зеленый.

А вот по поводу его эффективности в отдельных случаях возникают существенные вопросы. Вот оптимальное распределение спектров для двух самых популярных у нас овощей — огурца и помидора:

Всего на этих двух элементарных примерах между огурцом и томатом хорошо видно, насколько у них разная потребность. И если одной и той же лампочкой засвечивать оба овоща сразу, то результаты будут совершенно непредсказуемыми.

Кроме правильно подобранного спектра, важную роль играет еще два параметра — время и ритм освещения.

Все растения изначально произрастали на улице при естественном солнце. А солнце как известно не висит в зените 24 часа в сутки. Утром всходит, а вечером заходит. То есть естественная интенсивность освещения сначала постепенно растет, а во второй половине дня, достигнув своего пика, начинает падать.

Это и есть так называемый ритм. И растения его хорошо чувствуют. Измените ритм, не меняя ничего другого, и ваши овощи могут начать болеть, почувствовав себя «не в своей тарелке».

Поэтому опытные садоводы выделили три группы растений — короткого, длинного и нейтрального дня.

Вот их некоторые разновидности:

Длинный день — это когда интенсивность света наблюдается более 13 часов. Короткий — до 12 часов. Растениям для нейтрального дня все равно когда созревать, хоть при коротком, хоть при длинном.

Не будете соблюдать заданный природой цикл и у вас упадет урожайность. Сами растения будут какими-то карликовыми.

Поэтому мало просто купить супер разрекламированные сорта, правильно их высадить, удобрять и поливать.

Как оказывается, еще нужно их правильно освещать. Причем и здесь нет универсального светильника для больших групп растений, везде требуется индивидуальный подход.

Только в этом случае результат вас порадует и вкусом и размером.

Освещение рассады в домашних условиях

Растениям жизненно необходим свет, без которого они не смогут расти и развиваться. Особенно это касается саженцев, они наиболее чувствительны к перепадам освещённости и нуждаются в достаточном количестве света. В то же время неправильное или слишком интенсивное освещение может их погубить. Возможно ли освещение рассады светодиодными или другими лампами? Предлагаем рассмотреть, как правильно подсвечивать саженцы в домашних условиях.

Зачем нужна подсветка?

Из школьного курса биологии всем известно, что в зелёной части растений происходит фотосинтез, который невозможен без солнечного света. Конечно, фотосинтез — это основополагающий процесс жизнедеятельности, но такое понимание развития немного упрощённо.

Видимые лучи естественного света — это лишь малый диапазон спектра, который мы видим невооружённым взглядом. Часть спектра красного и синего цвета недоступна нашему глазу, хоть мы и ощущаем его воздействие. То же самое происходит и с растениями, для полноценного существования им необходимы все спектральные цвета, которые по-разному влияют на их жизнедеятельность:

  • красный цвет — улучшает метаболизм, способствует выработке хлорофилла и помогает фотосинтезу, очень важен для семян, в которых ещё нет хлорофилла;
  • синий — помогает в делении клеток, способствует развитию корневой системы;
  • оранжевый — помогает быстрому созреванию плода;
  • ультрафиолетовый — обладает обеззараживающим действием, подавляет размножение болезнетворных бактерий.

Если садовод проживает в южных регионах и имеет возможность держать рассаду под воздействием естественного света всегда, то, возможно, дополнительное освещение и не потребуется. Однако в домашних условиях, когда солнце светит в окно только половину дня, в пасмурное время или зимой подсветка обязательна. Некоторым растениям в период роста она требуется дольше, чем длится естественный световой день.

Характеристики необходимого света

Требования к свету у растений приблизительно одинаковые, хоть и могут незначительно отличаться в зависимости от сорта. Строгие условия выдвигаются к освещённости. Освещённость — это количество светового потока на единицу площади, измеряется в люксах. Тенелюбивым растениям требуется не меньше 6 000 Лк, а светолюбивым — более 8 000 Лк.

Чтобы на саженцы попадали лучи всего спектрального диапазона, нужно брать лампу с длиной волны 300—800 нм. На этапе семян в спектре должны преобладать синие цвета, затем распределяться в соотношении красного и синего как 2 к 1 и под конец быть в приблизительно одинаковом количестве.

Если рассада стоит на подоконнике, то будет достаточно лампочек мощностью 35—50 Вт. В комнате потребуются лампы помощнее — 100—150 Вт на 1 кв. м.

Как правило, подсветка нужна в том случае, когда солнечного света недостаточно. Это утренние и вечерние часы, пасмурные дни, окна, выходящие на теневую сторону. Длительность светового дня для рассады должна быть не менее 8—12 часов. Ночью необходимо давать отдых и выключать свет. Круглосуточное освещение вредно для растений, ведь ночью происходят важные процессы жизнедеятельности, такие как образование углеводов и высвобождение энергии.

Лампы для подсветки

От того, насколько правильно будут выбраны осветительные приборы, зависят рост и развитие саженцев. Чаще всего в домашних условиях используют:

  • лампы накаливания;
  • люминесцентные;
  • натриевые;
  • светодиодные приборы.

Рассмотрим особенности применения каждой лампы для дополнительного освещения рассады.

Лампы накаливания

Несмотря на то что этот вариант кажется самым доступным, экономичным и удобным, для подсветки рассады его использовать строго запрещено. На то есть несколько причин.

  1. Спектральные характеристики света не подходят для выращивания растений. Синего и красного света нет.
  2. Лампа накаливания расходует много электроэнергии, но только 5 % преобразуется в свет, остальное уходит на нагревание колбы и пространства вокруг.
  3. Исходя из предыдущего пункта, лампы нельзя вешать слишком низко к саженцам, это может привести к ожогам листьев. Но вешать слишком высоко тоже плохо, так как количество света слишком мало.

Люминесцентные лампы

Такой вариант лучше ламп накаливания, но досветка люминесцентной лампой имеет свои недостатки. Во-первых, в них не хватает красного спектрального света. Во-вторых, они обладают низкой мощностью, поэтому их целесообразно использовать на небольшой площади.

Лучше всего брать люминесцентные осветительные приборы с двухкомпонентным люминофорным покрытием, которое будет давать синий и красный свет. Чаще всего такую досветку используют на начальной стадии проращивания семян.

Технические характеристики подсветки:

  • КПД усваиваемого излучения — 20—22 %;
  • количество светоотдачи — 80 Лм/Вт;
  • длительность непрерывной работы — до 15 000 часов;
  • расход электроэнергии — 20—60 Вт/час, в зависимости от типа лампы.

Натриевые лампы

Натриевые лампочки высокого давления обладают, в отличие от люминесцентных, недостаточным количеством света в синей части спектра. Поэтому часто их используют вместе, компенсируя недостатки обоих досветок.

Характеристики натриевых лампочек:

  • КПД — 26—30 %;
  • количество светоотдачи — 150 Лм/Вт;
  • длительность работы — до 24 000 часов;
  • расход электроэнергии — более 70 Вт/час.

Светодиодные лампы

Освещение рассады и саженцев светодиодными лампами считается идеальным вариантом досветки. Спектральный диапазон таких светильников обладает всеми необходимыми цветами, в отличие от люминесцентных и натриевых ламп. Светодиоды не нагреваются и не вызовут ожоги листьев, как лампы накаливания.

Для рассады лучше всего брать лампочки с пометкой LED grow или фитолампы. Они оптимальны для досветки саженцев. Конструкция светодиодных приборов удобна в использовании. Существуют ленты, которые легко протянуть на нужном расстоянии от растения.

  • КПД усваиваемого излучения — 99 %;
  • количество светоотдачи — 100 Лм/Вт;
  • срок работы — 100 000 часов;
  • расход электричества — 1 Вт/час на 1 диод.

Установка осветительных приборов

Проще всего монтировать светодиодные приборы. Если это лента, то её легко прикрепить к любой поверхности. Другие лампы можно вкрутить в обычные светильники.

Оптимальное расположение лампочек — над рассадой, приближённо к естественному освещению. Чтобы растения получали достаточное количество света, светильники нужно располагать на высоте 10—40 см. Подсветку можно сделать на специальных кронштейнах, чтобы иметь возможность регулировать её высоту по мере роста.

Вокруг осветительных приборов можно разместить отражатели (белая ткань или фольга), которые будут направлять и рассеивать свет. Обязательное условие подсветки — безопасность. Следите, чтобы на колбы не попадала вода. В этом случае преимущество опять остаётся на стороне светодиодов, которые наиболее безопасны среди всех светильников.

Ящики с рассадой ставят на подоконник, комбинируя естественное и искусственное освещение, или в комнату. Для содержания саженцев в комнате делают стеллажи, которые занимают меньше места, в отличие от обычных полок.

Как сделать светодиодную ленту своими руками?

Ленту из светодиодов можно сделать самостоятельно в домашних условиях. Для этого понадобятся:

  • синие и красные светодиоды;
  • термоклей;
  • длинная балка из алюминия или дерева (рейка, карниз, линейка и т. д.);
  • блок питания;
  • шнур с вилкой.

На рейку с помощью термоклея крепятся светодиоды в следующей последовательности: 2 красных, 1 синий. Диоды соединяются между собой припаем и выводятся к блоку питания, который в свою очередь крепится к шнуру. Всё — светодиодная лента готова. Теперь её можно устанавливать на любую поверхность.

К досветке рассады выдвигается много требований. Она должна содержать все необходимые цвета, быть безопасной и удобной в использовании. Малейшее отхождение от норм может погубить все труды, растения погибнут. Поэтому лучше всего сразу оборудовать помещение, где будут содержаться саженцы, подходящими светодиодными фитолампами и наблюдать за их ростом и развитием.

Светодиодные лампы для растений. Правильное освещение для теплицы

Свет крайне нужен всем представителям флоры без исключения. Но часто в условиях квартиры естественного освещения бывает недостаточно для полноценного развития и цветения зеленых питомцев. Комнатным растениям необходимо освещение около 10 тыс. люкс. В комнате недалеко от окна обычно этот показатель не более 5 тыс. люкс. Даже солнечным летом удаление растений от окна существенно снижает освещенность.

Обычные люминесцентные лампы практически бесполезны, так как их спектр для растений малопригоден. Лишь некоторые из них подходят для подсветки вашего домашнего сада. Прочитать об этом можно здесь. Несмотря на то, что светодиодные лампы (LED) для растений совсем недавно вошли в нашу жизнь, они уже успели создать себе хорошую репутацию.

Подходящий для растений спектр светодиодных ламп

Далеко не все светодиодные лампы подойдут для подсветки растений. При организации дополнительного освещения необходимо учитывать оптическую длину волн, или иначе диапазон спектра излучения. Существует непосредственная связь между эффективностью фотосинтеза, количеством полученных растением лучей и их спектральным составом. Наиболее благоприятны для растений:

  • Синий спектр 430–455 нм, используемый для освещения во время вегетации. Сине-фиолетовый диапазон помогает в создании ингибиторов роста, которые способствуют формированию растения, увеличению его плотности и крепости.
  • Красный спектр 660 нм, используемый на стадии цветения растений. Красно-оранжевый диапазон волн отвечает за развитие плодов, корней, прирост объема ботвы.

Синий и красный спектр наиболее благоприятны для растений

Остальные диапазоны крайне малоэффективны для подсветки. Для различных видов растений, а также этапов их роста необходимы разные соотношения синей и красной составляющей спектра.

Подсветка диодами еще достаточно молодое направление, но эксперименты в этой области продолжаются.

Какие светодиоды выбрать: преимущества и недостатки, технические показатели

Светодиодные светильники — сложные устройства и их цена в значительной степени зависит от технических характеристик, подробнее читайте тут. Выбирать фитолампу следует исходя из видов растений, требующих подсветки, и необходимой площади освещения.

К важным техническим характеристикам светодиодов относятся:

  • Потребляемая мощность в ваттах. Основная характеристика лампы. В быту обычно используют лампы от 1 до 25 Вт.
  • Световой поток, являющийся характеристикой яркости лампы. Измеряется в люменах.
  • Цвет излучения.
  • Габаритные размеры в мм.
  • Угол излучения.

В отличие от других фитоламп, свет которых распространяется во все стороны, у диодов встроенные линзы позволяют добиться более сконцентрированного потока света. Это делает ненужным применение всевозможных отражателей.

  • Площадь, которую освещает лампа в м. кв.
  • Нагрев корпуса лампы до + 55–60 °C.
  • Интервал рабочих температур от -25 до + 40 °C.
  • Напряжение питающей сети, В.
  • Степень защиты IP.
  • Срок службы в часовом выражении.

Светодиоды — идеальная подсветка для растений

Положительные стороны светодиодов:

  • Направленность излучения.
  • Долговечность. Срок службы качественных светодиодных ламп достигает 50000 часов. Лампы для растений специально изготавливают с расчетом длительного использования. При условии работы в сутки по 16 часов их хватит на 11 лет.
  • Простота монтажа. Дополнительного оборудования, специальных патронов для подключения к сети светильника не требуется. Также нет необходимости в отражателях и защитных стеклах.
  • Интенсивность излучения можно регулировать.
  • Более низкое чем у натриевых ламп энергопотребление.
  • Энергоэффективность. Лампы LED позволяют, благодаря узкому спектру излучения, составлять максимально эффективный для растений и сбалансированный световой поток.
  • Безопасность. Температура нагрева светодиодного светильника не превышает 55 °C и не вызывает ожоги в случае соприкосновения с листьями растения.
  • Светодиодная подсветка не меняет температурный режим помещения.
  • Экологичность. Светодиоды не представляют опасности для человека, так как не содержат вредных веществ.
  • Эстетичность подсветки в интерьере.

Отрицательные стороны светодиодов

  • К недостаткам светодиодных фитоламп относится, прежде всего, существенно высокая цена. Но она постепенно снижается по мере роста спроса и развития сферы использования.

Время освещения

На процесс фотосинтеза помимо спектрального состава света оказывает существенное влияние световой режим. То есть соотношение и количество времени проведенного на свету и в темноте. При выращивании определенных видов растений можно манипулировать стадиями цветения и вегетации, меняя протяженность светового дня. Увеличение сверх нужной величины продолжительности бодрствования растений короткого дня может вызвать нарушение стадии цветения.

Существуют нейтральные виды, например, розы, на стадии развития которых режим освещения влияния не оказывает.

Перед установкой светодиодного светильника необходимо выяснить световые предпочтения и правила содержания ваших зеленых насаждений. Растения короткого дня будут цвести, если световой день не превысит 12 часов. Комнатным растениям длинного дня требуется интервал бодрствования не менее 14 часов. Часто встречаются растения, которым необходима индивидуальная подсветка.

Светодиодная подсветка теплицы

В итоге потребуется создать график включения-выключения светодиодной лампы либо приобрести систему управления освещением с таймером. Как выбрать управление светом, читайте в этой статье.

Расположение

Светодиодные лампы располагают практически вплотную к растениям, так как угол падения светового потока строго определен и свет не рассеивается. К тому же светодиоды не нагреваются и не могут повредить листве. Расстояние от лампы до листвы должно быть около 15–30 см. Этого можно добиться путем использования подвесных светильников на тросах. Они помогут отрегулировать требуемое расстояние.

Расположение светильника имеет значение не только для здорового развития растений, но и для эстетического эффекта.

Если свет направить сверху, то он объединит небольшую группу растений и выделит их структуру, создаст интересную игру светотени. Подсветка снизу предпочтительна для комнатных деревьев и крупных кустарников. Если светильник расположить перед растением, то на стене будет отображаться красивый теневой силуэт, а структура и окраска ветвей и листвы будут видны во всех нюансах. Если же лампу разместить позади растения, то тени от цветка будут падать на потолок и центр комнаты, а его передний план окажется затенен, что создаст очень оригинальный эффект. Свет, направленный сбоку, хорош для кустистых растений небольших размеров, так как он красиво выделяет их силуэт и подчеркивает структуру листвы.

Расположение светильника сверху

Рынок светодиодных фитоламп на данный момент очень небольшой и представлен в основном некрупными китайскими производителями, но неуклонный рост интереса садоводов к использованию LED-светильников открывает значительные перспективы для развития этого направления. Светодиодные лампы начинают активно использовать для подсветки теплиц, зимних садов, выращивания рассады.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: